Reflection principle and distribution of the running maximum of BM

Math 622
February 19, 2014

1 The reflection principle

1.1 Definition

Let $W(t)$ be a Brownian motion w.r.t a filtration $\mathcal{F}(t)$ and τ a $\mathcal{F}(t)$ stopping time. We define

$$
\begin{aligned}
B^{\tau} & :=W(t), t \leq \tau \\
& :=W(\tau)-[W(t)-W(\tau)], t>\tau .
\end{aligned}
$$

That is B^{τ} is the same as $W(t)$ up to the random time τ and after time τ is obtained by reflecting $W(t)$ around the horizontal line $y=W(\tau)$. We say B^{τ} is a reflected BM at τ.

1.2 The reflection principle

Theorem 1.1. The B^{τ} defined above is a $\mathcal{F}(t)$ Brownian motion.
In words, the reflection principel says a refleted BM is a BM.
The heuristics of why the Theorem is true is
(i) The strong Markov property: $W(t)-W(\tau)$ is a Brownian motion independent of $\mathcal{F}(\tau)$
and
(ii) The negative of a BM is also a BM. Thus before t, B^{τ} is a BM , after τ it is also a BM (although starting at $W(\tau)$ instead of at 0). The key is how to show when we
go across τ the BM property is still preserved and we achieve that by Levy's characterization of BM.
Proof. Define

$$
\begin{aligned}
a(t) & =1, t \leq \tau \\
& =-1, t>\tau
\end{aligned}
$$

That is

$$
\begin{aligned}
a(t) & =\mathbf{1}_{t \leq \tau}-\mathbf{1}_{t>\tau} \\
& =\mathbf{1}_{t \leq \tau}-\left(1-\mathbf{1}_{t \leq \tau}\right) \\
& =2 \mathbf{1}_{t \leq \tau}-1 .
\end{aligned}
$$

It is easy then to see $a(t) \in \mathcal{F}(t), \forall t$ since τ is a stopping time. It is also bounded, hence is in L^{2}. Thus we can consider $\int_{0}^{t} a(s) d W(s)$. We have

$$
\begin{aligned}
\int_{0}^{t} a(s) d W(s) & =\int_{0}^{t} 2 \mathbf{1}_{s \leq \tau} d W(s)-W(t) \\
& =\int_{0}^{t} 2 \mathbf{1}_{[0, \tau)}(s) d W(s)-W(t) \\
& =2 W(t \wedge \tau)-W(t)=B^{\tau}(t)
\end{aligned}
$$

(Just consider what happens when $\tau \leq t$ and $\tau>t$.)
Thus $B^{\tau}(t)$ is a martingale. Moreover, its quadratic variation is:

$$
\left\langle B^{\tau}\right\rangle_{t}=\int_{0}^{t} \alpha^{2}(s) d s=t
$$

since $\alpha(s)$ is either 1 or -1 . Thus by Levy's characterization, B^{τ} is a BM.

1.3 An important identity

Let $W(t)$ be a BM and $M(t):=\max _{[0, t]} W(s)$ its running maximum. The reflection principle helps us obtain the joint density between $W(t)$ and $M(t)$ through the following important identity:

$$
\{M(t)>m, W(t)<w\}=\{B(t)>2 m-w\},
$$

where $B(t):=B^{\tau_{m}}(t)$ is the BM obtained by reflecting $W(t)$ at time τ_{m}, the first hitting time of $W(t)$ to level m :

$$
\tau_{m}:=\inf \{t \geq 0: W(t)=m\}
$$

See the picture accompanying this lecture note for illustration.

Remark 1.2. Our goal with the identiy is to use it to derive the joint density $f_{t}(m, w)$ of $M(t), W(t)$, therefore we are only interested in considering $m \geq w$ and $m \geq 0$ because we always have $M(t) \geq W(t)$ and $M(t) \geq W(0)=0$.

Proof. Proof of the identity
(i) Suppose $M(t)>m$ and $W(t)<w$. Then $M(t)>m$ implies $\tau_{m}<t$ and hence

$$
\begin{aligned}
B(t) & =2 W\left(\tau_{m}\right)-W(t) \\
& =2 m-W(t)>2 m-w
\end{aligned}
$$

(ii) Suppose $B(t)>2 m-w$. Then $B(t)>m$ because $w \leq m$. So it cannot be the case that $B(t)=W(t)$ since that would imply $W(t)>m$ and thus $\tau_{m}<t$, a contradiction to $B(t)=W(t)$ only when $t<\tau_{m}$. Thus $B(t)=2 m-W(t)$ and $\tau_{m}<t$ which implies $M(t)>m$. Moreover,

$$
B(t)=2 m-W(t)>2 m-w
$$

implies $W(t)<w$ and we are done.

1.4 Joint distribution of $W(t)$ and $M(t)$

From the identiy above and the reflection principle (which implies $B(t)$ is a BM) we have

$$
P(M(t)>m, W(t)<w)=P(B(t)>2 m-w)=\int_{2 m-w}^{\infty} \frac{e^{\frac{-x^{2}}{2 t}}}{\sqrt{2 \pi t}} d x
$$

If $f_{t}(m, w)$ is the joint density of $(M(t), W(t))$ then

$$
P(M(t)>m, W(t)<w)=\int_{-\infty}^{w} \int_{m}^{\infty} f_{t}(z, x) d z d x=\int_{2 m-w}^{\infty} \frac{e^{\frac{-x^{2}}{2 t}}}{\sqrt{2 \pi t}} d x
$$

Thus by the Fundamental Theorem of Calculus, we get

$$
\begin{aligned}
f_{t}(m, w) & =-\frac{\partial^{2}}{\partial m \partial w} P(M(t)>m, W(t)<w) \\
& =\frac{2(2 m-w)}{t \sqrt{2 \pi t}} e^{-\frac{(2 m-w)^{2}}{2 t}} \mathbf{1}_{m \geq 0, w \leq m} .
\end{aligned}
$$

2 Some explicit formula for $H_{s}(\alpha, \beta, k, b)$

Recall that when computing the price of Knockout Barrier and Lookback Options, we introduced the function

$$
H_{s}(\alpha, \beta, k, b):=E\left[\mathbf{1}_{\{W(s) \geq k\}} \mathbf{1}_{\{M(s)>b\}} e^{\alpha W(s)+\beta M(s)}\right] .
$$

We will give the explicit formula for H_{s} in certain cases.
$2.1 \quad H_{s}(\alpha, 0, k, b)$ when $0 \leq b \leq k$
Since $M(s) \geq W(s)$ we have if $W(s) \geq k$ then $M(s) \geq W(s) \geq k \geq b$.
Thus

$$
\{W(s) \geq k\} \cap\{M(s) \geq b\}=\{W(s) \geq k\} .
$$

In other words,

$$
\mathbf{1}_{\{W(s) \geq k\}} \mathbf{1}_{\{M(s)>b\}}=\mathbf{1}_{\{W(s) \geq k\}} .
$$

So

$$
\begin{equation*}
H_{s}(\alpha, 0, k, b)=E\left[\mathbf{1}_{\{W(s) \geq k\}} e^{\alpha W(s)}\right]=e^{s \frac{\alpha^{2}}{2}} N\left(\frac{s \alpha-k}{\sqrt{s}}\right) . \tag{1}
\end{equation*}
$$

$2.2 H_{s}(\alpha, 0, k, b)$ when $k<b$
Theorem 2.1. If $k<b$,

$$
H_{s}(\alpha, 0, k, b)=e^{s \frac{\alpha^{2}}{2}}\left\{N\left(\frac{s \alpha-b}{\sqrt{s}}\right)+e^{2 \alpha b}\left[N\left(\frac{-s \alpha-b}{\sqrt{s}}\right)-N\left(\frac{-s \alpha-2 b+k}{\sqrt{s}}\right)\right]\right\} .
$$

Proof. Since $k<b$,

$$
\begin{aligned}
E\left[\mathbf{1}_{\{W(s) \geq k\}} \mathbf{1}_{\{M(s)>b\}} e^{\alpha W(s)}\right]= & E\left[\mathbf{1}_{\{W(s) \geq b\}} \mathbf{1}_{\{M(s)>b\}} e^{\alpha W(s)}\right] \\
& +E\left[\mathbf{1}_{\{k \leq W(s)<b\}} \mathbf{1}_{\{M(s)>b\}} e^{\alpha W(s)}\right] .
\end{aligned}
$$

Now

$$
E\left[\mathbf{1}_{\{W(s) \geq b\}} \mathbf{1}_{\{M(s)>b\}} e^{\alpha W(s)}\right]=H_{s}(\alpha, 0, b, b),
$$

and we have found the expression for $H_{s}(\alpha, 0, b, b)$ in Section 2.1. As for the 2nd term, observe that

$$
\{k<W(s)<b, M(s)>b\}=\{W(s)<b, M(s)>b\} \cap\{k<W(s), M(s)>b\} .
$$

We have showed that

$$
\{W(s)<b, M(s)>b\}=\left\{B^{\tau_{b}}(s)>b\right\},
$$

where $B^{\tau_{b}}$ is again $W(t)$ reflected at τ_{b}, the first hitting time of $W(t)$ to level b. We claim that

$$
\{k<W(s), M(s)>b\}=\left\{M(s)>b, B^{\tau_{b}}(s)<2 b-k\right\} .
$$

(This is left as part of the homework).
Thus noting that $B^{\tau_{b}}(s)>b$ implies $M(s)>b$ we get

$$
\begin{aligned}
\{k<W(s)<b, M(s)>b\} & =\left\{B^{\tau_{b}}(s)>b\right\} \cap\left\{M(s)>b, B^{\tau_{b}}(s)<2 b-k\right\} \\
& =\left\{b<B^{\tau_{b}}(s)<2 b-k\right\} .
\end{aligned}
$$

We leave it as the other part of the homework to use this and (1) to complete the proof.

$2.3 \quad H_{s}(\alpha, \beta,-\infty, b)$

Theorem 2.2.

$$
\begin{aligned}
H_{s}(\alpha, \beta,-\infty, b)= & \frac{\beta+\alpha}{\beta+2 \alpha} 2 e^{\frac{(\alpha+\beta)^{2}}{2} s} N\left(\frac{(\alpha+\beta) s-b}{\sqrt{s}}\right) \\
& +\frac{2 \alpha}{\beta+2 \alpha} e^{\frac{\alpha^{2}}{2} s} e^{b(\beta+2 \alpha)} N\left(-\frac{\alpha s+b}{\sqrt{s}}\right) .
\end{aligned}
$$

Proof. See Ocone's Lecture 5 part 2 proof, page 3.

