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1 The reflection principle

1.1 Definition

Let W (t) be a Brownian motion w.r.t a filtration F(t) and τ a F(t) stopping time.

We define

Bτ := W (t), t ≤ τ

:= W (τ)− [W (t)−W (τ)], t > τ.

That is Bτ is the same as W (t) up to the random time τ and after time τ is

obtained by reflecting W (t) around the horizontal line y = W (τ). We say Bτ is a

reflected BM at τ .

1.2 The reflection principle

Theorem 1.1. The Bτ defined above is a F(t) Brownian motion.

In words, the reflection principel says a refleted BM is a BM.

The heuristics of why the Theorem is true is

(i) The strong Markov property: W (t)−W (τ) is a Brownian motion independent of

F(τ)

and

(ii) The negative of a BM is also a BM. Thus before t, Bτ is a BM, after τ it is also

a BM (although starting at W (τ) instead of at 0). The key is how to show when we
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go across τ the BM property is still preserved and we achieve that by Levy’s

characterization of BM.

Proof. Define

a(t) = 1, t ≤ τ

= −1, t > τ.

That is

a(t) = 1t≤τ − 1t>τ

= 1t≤τ − (1− 1t≤τ )

= 21t≤τ − 1.

It is easy then to see a(t) ∈ F(t),∀t since τ is a stopping time. It is also bounded,

hence is in L2. Thus we can consider
∫ t
0
a(s)dW (s). We have∫ t

0

a(s)dW (s) =

∫ t

0

21s≤τdW (s)−W (t)

=

∫ t

0

21[0,τ)(s)dW (s)−W (t)

= 2W (t ∧ τ)−W (t) = Bτ (t).

(Just consider what happens when τ ≤ t and τ > t.)

Thus Bτ (t) is a martingale. Moreover, its quadratic variation is:

〈Bτ 〉t =

∫ t

0

α2(s)ds = t,

since α(s) is either 1 or -1. Thus by Levy’s characterization, Bτ is a BM.

1.3 An important identity

Let W (t) be a BM and M(t) := max[0,t]W (s) its running maximum. The reflection

principle helps us obtain the joint density between W (t) and M(t) through the

following important identity:{
M(t) > m,W (t) < w

}
=
{
B(t) > 2m− w

}
,

where B(t) := Bτm(t) is the BM obtained by reflecting W (t) at time τm, the first

hitting time of W (t) to level m:

τm := inf{t ≥ 0 : W (t) = m}.

See the picture accompanying this lecture note for illustration.
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Remark 1.2. Our goal with the identiy is to use it to derive the joint density

ft(m,w) of M(t),W (t), therefore we are only interested in considering m ≥ w and

m ≥ 0 because we always have M(t) ≥ W (t) and M(t) ≥ W (0) = 0.

Proof. Proof of the identity

(i) Suppose M(t) > m and W (t) < w. Then M(t) > m implies τm < t and hence

B(t) = 2W (τm)−W (t)

= 2m−W (t) > 2m− w.

(ii) Suppose B(t) > 2m− w. Then B(t) > m because w ≤ m. So it cannot be the

case that B(t) = W (t) since that would imply W (t) > m and thus τm < t, a

contradiction to B(t) = W (t) only when t < τm. Thus B(t) = 2m−W (t) and

τm < t which implies M(t) > m. Moreover,

B(t) = 2m−W (t) > 2m− w

implies W (t) < w and we are done.

1.4 Joint distribution of W (t) and M(t)

From the identiy above and the reflection principle (which implies B(t) is a BM) we

have

P (M(t) > m,W (t) < w) = P (B(t) > 2m− w) =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

If ft(m,w) is the joint density of (M(t),W (t)) then

P (M(t) > m,W (t) < w) =

∫ w

−∞

∫ ∞
m

ft(z, x)dzdx =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

Thus by the Fundamental Theorem of Calculus, we get

ft(m,w) = − ∂2

∂m∂w
P (M(t) > m,W (t) < w)

=
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t 1m≥0,w≤m.

3



2 Some explicit formula for Hs(α, β, k, b)

Recall that when computing the price of Knockout Barrier and Lookback Options,

we introduced the function

Hs(α, β, k, b) := E
[
1{W (s)≥k}1{M(s)>b}e

αW (s)+βM(s)
]
.

We will give the explicit formula for Hs in certain cases.

2.1 Hs(α, 0, k, b) when 0 ≤ b ≤ k

Since M(s) ≥ W (s) we have if W (s) ≥ k then M(s) ≥ W (s) ≥ k ≥ b.

Thus {
W (s) ≥ k

}
∩
{
M(s) ≥ b

}
=
{
W (s) ≥ k

}
.

In other words,

1{W (s)≥k}1{M(s)>b} = 1{W (s)≥k}.

So

Hs(α, 0, k, b) = E
[
1{W (s)≥k}e

αW (s)
]

= es
α2

2 N
(sα− k√

s

)
. (1)

2.2 Hs(α, 0, k, b) when k < b

Theorem 2.1. If k < b,

Hs(α, 0, k, b) = es
α2

2

{
N
(sα− b√

s

)
+ e2αb

[
N
(−sα− b√

s

)
−N

(−sα− 2b+ k√
s

)]}
.

Proof. Since k < b,

E
[
1{W (s)≥k}1{M(s)>b}e

αW (s)
]

= E
[
1{W (s)≥b}1{M(s)>b}e

αW (s)
]

+E
[
1{k≤W (s)<b}1{M(s)>b}e

αW (s)
]
.

Now

E
[
1{W (s)≥b}1{M(s)>b}e

αW (s)
]

= Hs(α, 0, b, b),
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and we have found the expression for Hs(α, 0, b, b) in Section 2.1. As for the 2nd

term, observe that{
k < W (s) < b,M(s) > b

}
=
{
W (s) < b,M(s) > b

}
∩
{
k < W (s),M(s) > b

}
.

We have showed that{
W (s) < b,M(s) > b

}
=
{
Bτb(s) > b

}
,

where Bτb is again W (t) reflected at τb, the first hitting time of W (t) to level b.

We claim that{
k < W (s),M(s) > b

}
=
{
M(s) > b,Bτb(s) < 2b− k

}
.

(This is left as part of the homework).

Thus noting that Bτb(s) > b implies M(s) > b we get{
k < W (s) < b,M(s) > b

}
=

{
Bτb(s) > b

}
∩
{
M(s) > b,Bτb(s) < 2b− k

}
=

{
b < Bτb(s) < 2b− k

}
.

We leave it as the other part of the homework to use this and (1) to complete the

proof.

2.3 Hs(α, β,−∞, b)

Theorem 2.2.

Hs(α, β,−∞, b) =
β + α

β + 2α
2e

(α+β)2

2
sN
((α + β)s− b√

s

)
+

2α

β + 2α
e
α2

2
seb(β+2α)N

(
− αs+ b√

s

)
.

Proof. See Ocone’s Lecture 5 part 2 proof, page 3.
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